Alexander Radkoff

Thesis Presentation Outline Draft

Advisor: Dr. Stephen Treado

Submitted: April 2nd, 2014

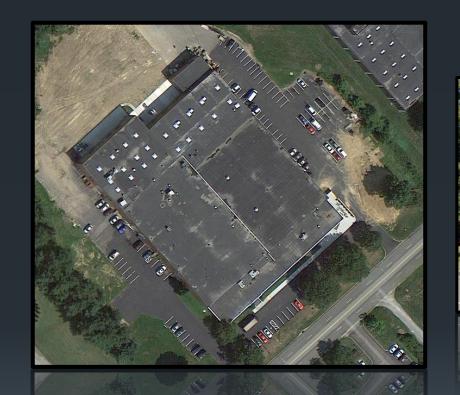
Thesis Presentation

Thesis:

- I. Introduction
 - A. Background
 - i. Location
 - ii. Building Use
 - iii. Construction
 - B. Design Conditions
 - i. Summer Design Conditions
 - ii. Winter Design Conditions
- II. Existing Mechanical System
 - A. Office and Warehouse Mechanical System breakdown
 - B. Annual Load Simulation
 - C. Energy Cost and Consumption

III. Variable Refrigerant Flow System – Depth

- A. System Layout and Pipe Sizing
 - i. VRF System Diagram or Schematic
- B. VRF Unit Selection
 - a. Slim Duct or MSP FCU
 - b. Condensing Unit
 - c. Mode Change Unit
- C. Refrigerant Data
 - a. R-410A Application
 - b. Antifreeze selection
 - c. CO2 Refrigerant Investigation
- D. Head Loss Calculations
- IV. Cost Analysis
 - A. Monthly Energy Use
 - B. Cost Analysis Comparison
- V. Emissions Analysis
 - A. Natural Gas and CO2 Calculated Emissions
 - B. Reduction in Emissions


VI. Acoustical Breadth Design

- A. Recommended NC Rating for Offices
- B. Existing Mechanical Conditions and NC Rating
- C. Proposed Mechanical Conditions and NC Rating
- VII. Conclusion
 - A. Depth and Breadth Conclusions


- B. Acknowledgements
- C. References

Estimated Number of Slides: 22-25

Number of Breadths: 1

Pittsburgh, Pennsylvania

Alexander Radkoff Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Pittsburgh, Pennsylvania

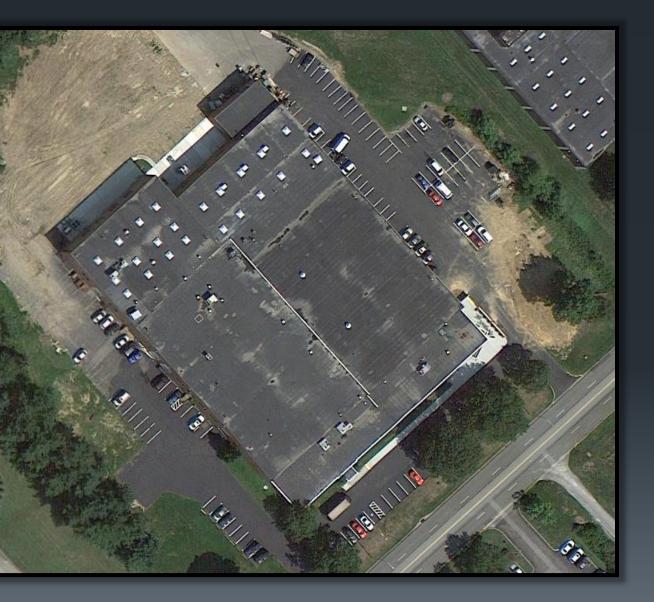
Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis


Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Background

Location: Pittsburgh, Pennsylvania

Building Use:

- Warehouse Storage • Laboratory Space • Offices

Footprint: 64,350 square feet

Ceiling Height:

- Offices: 9' • Warehouse: 22' 6"

Renovated: 2012

Pittsburgh, <u>Pennsylv</u>ania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado OA Dry Bu

OA Wet Bu

Design Conditions

Outdoor Design Conditions

Indoor Design Conditions

	Summer Design Cooling	Winter Design Heating	
lb (°F)	89 °F	2.0 °F	
lb (°F)	72 °F	.3 °F	

	Offices & Lab	Warehouse & Packaging	Storage & Maintenance
Cooling Set Point 70 °F		85 °F	95 °F
Heating Set Point	55 °F	55 °F	60 °F
Relative Humidity	45%	-	-

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

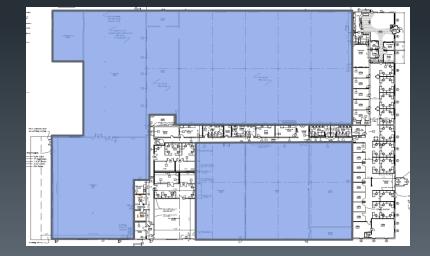
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Existing Mechanical System

Office/Lab Space


- 6 single zone CAV rooftop units (RTUs)
- CO2 preheat conditioning option available
- CO2 radiant floor cooling and heating

Warehouse and Storage

- Primarily electric resistance heat
- 8 air handling units (AHUs)
- Makeup air handling unit

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Annual Load Simulation

Monthly Cooling Load Figure

HVAC/Lighting/Elect. Equip Breakdown

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Energy Cost and Consumption

Energy Consumption Table for electric and natural gas

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado System Layout

Variable Refrigerant Flow System

VRF System Diagram or Schematic

Pipe Sizing

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

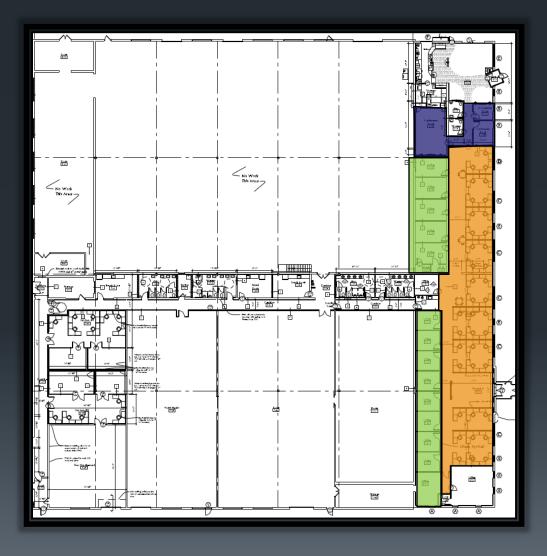
Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Open-Offic


Private O

Confere Roon

Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA
Plan es	35-40	45-50
Offices	30-35	40-45
ence ns	25-30	35-40

Private Offices

Conference Rooms

Open Plan Offices

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

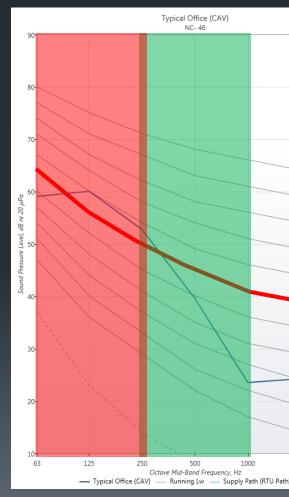
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Octave Frequenc

Discha


Acoustical Breadth Investigation

Existing Mechanical Conditions

- 5 Ton Carrier 50TCD06 Rooftop Unit
- 1" Fiberglass Insulation
- Room Dimensions : 34'x26'x8'
- Measure SPL to nearest diffuser

	Sound Power Level, dB (re 10^-12 W)						
Band cy, HZ	63	125	250	500	1000	2000	4000
irge	85.8	84.3	80.5	78.7	76.4	72.7	68.3

Existing Mechanical NC Rating

NC-46 ~ 48 dBA

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

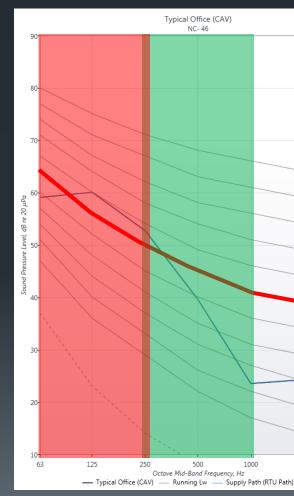
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Open-Offic

Private O


Confere Roon

Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA
Plan es	35-40	45-50
Offices	30-35	40-45
ence ns	25-30	35-40

Existing Mechanical NC Rating

NC-46 ~ 48 dBA

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

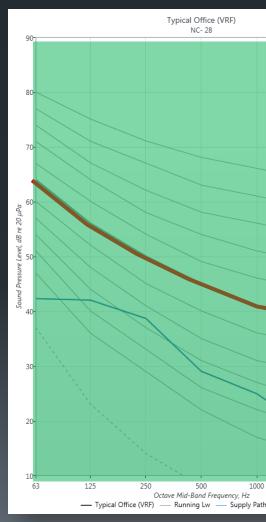
Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Octave Band Frequency, HZ Discharge


Acoustical Breadth Investigation

Proposed Mechanical Conditions

- Samsung DMV S60 Medium Static Pressure (MSP) Duct Fan Coil Units
- 1" Fiberglass Lining
- Room Dimensions : 34'x26'x8'

Sound Power Level, dB (re 10^-12 W)						
63	125	250	500	1000	2000	4000
47.1	44.2	43.4	40.0	36.7	34.3	29.6

Recommended Noise Criterion - NC

NC-28 ~ 34 dBA

(RTU Path)

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

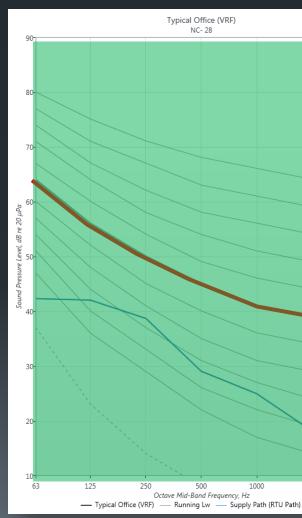
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Ope

Private


Conf Ro

Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA	
n-Plan fices	35-40	45-50	
e Offices	30-35	40-45	
erence oms	25-30	35-40	

Recommended Noise Criterion - NC

NC-28 ~ 34 dBA

